Lesson 7.1: Project Overview and Requirements
System Requirements
Functional:
- Support 10k concurrent users
- Sub-100ms query latency for features
- Store 1M+ documents for RAG
- Log all model predictions
- Track user conversations
- Real-time analytics dashboard
Non-Functional:
- ACID transactions for critical data
- Horizontal read scaling (replicas)
- Partitioning for time-series data
- Proper indexing (all queries under 100ms)
- Data retention policies
Architecture Diagram
User Query
↓
[API Layer]
↓
┌─────────────────────────────────────┐
│ PostgreSQL (Primary) │
│ │
│ ┌──────────────────────────────┐ │
│ │ RAG System │ │
│ │ - documents │ │
│ │ - chunks (with embeddings) │ │
│ │ - permissions │ │
│ └──────────────────────────────┘ │
│ │
│ ┌──────────────────────────────┐ │
│ │ Feature Store │ │
│ │ - user_features (cached) │ │
│ └──────────────────────────────┘ │
│ │
│ ┌──────────────────────────────┐ │
│ │ Conversation Memory │ │
│ │ - conversations │ │
│ │ - messages │ │
│ │ - agent_entities │ │
│ └──────────────────────────────┘ │
│ │
│ ┌──────────────────────────────┐ │
│ │ Model Logs (Partitioned) │ │
│ │ - predictions_2024_01 │ │
│ │ - predictions_2024_02 │ │
│ └──────────────────────────────┘ │
└─────────────────────────────────────┘
│
↓
[Read Replicas]
- Analytics
- Dashboard
Key Takeaways
- Capstone project builds a complete AI-powered customer support system
- Four main components: RAG system, feature store, conversation memory, model logs
- Functional requirements focus on scale (10k users, 1M+ documents)
- Performance requirements demand sub-100ms latency for features
- Architecture uses PostgreSQL primary + read replicas for horizontal scaling
- Time-series data requires partitioning for model predictions
- Production readiness includes ACID transactions, proper indexing, and retention policies

