Detecting Missing Values
Missing data is common in real-world datasets. Pandas represents missing values as NaN (Not a Number) or None.
Identifying Missing Values
Use isnull() or isna() to detect missing values:
Loading Pandas Playground...
Counting Missing Values
Get counts of missing data:
Loading Pandas Playground...
Percentage of Missing
Calculate what fraction is missing:
Loading Pandas Playground...
Finding Non-Missing Values
Use notna() to find valid data:
Loading Pandas Playground...
Checking for Any/All Missing
Quick checks across data:
Loading Pandas Playground...
Summary of Missing Data
Create a comprehensive missing data report:
Loading Pandas Playground...
Exercise: Count Missing
Loading Exercise...
Exercise: Filter Valid Rows
Loading Exercise...
Key Points
NaNandNonerepresent missing valuesisnull()/isna()detect missing (returns True)notna()detects present values (returns True).sum()counts missing per column/row.any()/.all()for quick checks- Calculate percentages with
/ len(df) * 100

