Multi-Format Content Adaptation
One piece of content can serve many channels. This lesson covers workflows for adapting content across formats while maintaining consistency.
The Content Multiplication Model
┌→ Blog Post
├→ Social Media Posts
Original Content ──┼→ Email Newsletter
├→ Video Script
└→ Podcast Notes
Adaptation Strategies
Core Message Extraction
First, identify what must stay consistent:
Loading Prompt Playground...
Format-Specific Adaptation
Each format has different requirements:
| Format | Length | Tone | Focus |
|---|---|---|---|
| Blog | 1500-2500 words | Educational | Depth |
| 280 chars | Punchy | Hook | |
| 1300 chars | Professional | Insight | |
| 300-500 words | Personal | Value | |
| Video Script | 500-1000 words | Conversational | Clarity |
Format-Specific Chains
Social Media Adaptation
Loading Prompt Playground...
Email Newsletter Adaptation
async function adaptToNewsletter(content, subscriberSegment) {
const prompt = `
Adapt this blog content into an email newsletter.
BLOG CONTENT:
${content.summary}
KEY POINTS:
${content.keyPoints.join('\n')}
SUBSCRIBER SEGMENT: ${subscriberSegment}
EMAIL REQUIREMENTS:
- Subject line (50 chars max, 30-40% open rate target)
- Preview text (90 chars max)
- Personal opening
- 3 key takeaways (bullet points)
- One clear CTA
- PS line with bonus content
Generate the complete email:
`;
return await llm.chat({ content: prompt });
}
Video Script Adaptation
Loading Prompt Playground...
Adaptation Pipeline
Full Multi-Format Workflow
async function multiFormatAdaptation(originalContent) {
// Extract core elements
const core = await extractCoreMessage(originalContent);
// Generate all formats in parallel
const [twitter, linkedin, email, videoScript, podcastNotes] = await Promise.all([
adaptToTwitter(core),
adaptToLinkedIn(core),
adaptToEmail(core),
adaptToVideoScript(core),
adaptToPodcastNotes(core)
]);
// Verify consistency
const consistency = await verifyConsistency({
twitter, linkedin, email, videoScript, podcastNotes
}, core);
return {
original: originalContent,
core,
adaptations: { twitter, linkedin, email, videoScript, podcastNotes },
consistencyScore: consistency.score,
warnings: consistency.warnings
};
}
Consistency Verification
async function verifyConsistency(adaptations, core) {
const checks = [];
for (const [format, content] of Object.entries(adaptations)) {
// Check core message preserved
const messagePreserved = await checkMessagePresent(content, core.core_message);
// Check key stats accurate
const statsAccurate = await checkStatsAccuracy(content, core.key_statistics);
// Check CTA aligned
const ctaAligned = await checkCTAAlignment(content, core.call_to_action);
checks.push({
format,
messagePreserved,
statsAccurate,
ctaAligned,
score: (messagePreserved + statsAccurate + ctaAligned) / 3
});
}
return {
checks,
score: checks.reduce((sum, c) => sum + c.score, 0) / checks.length,
warnings: checks.filter(c => c.score < 0.8).map(c => `${c.format}: consistency issues`)
};
}
Exercise: Build a Multi-Format Pipeline
Loading Prompt Playground...
Key Takeaways
- Extract core message before adapting
- Each format has specific constraints and goals
- Parallel generation improves efficiency
- Verify consistency across all adaptations
- Maintain key messages and statistics across formats
- Adapt tone and depth for each channel
- Build reusable adaptation templates
In the next module, we'll explore code generation workflows.

