Code Generation Chain Patterns
Code generation benefits significantly from chaining. Breaking the process into steps improves quality, maintainability, and correctness.
Why Chain Code Generation?
Single-prompt code generation often fails because:
- Complex requirements get lost
- Generated code lacks structure
- Edge cases are forgotten
- Testing is an afterthought
- No validation of correctness
The Code Generation Pipeline
Requirements → Design → Generate → Validate → Test → Refine → Document
Core Patterns
Pattern 1: Requirements to Design
Convert requirements into technical design first:
Loading Prompt Playground...
Pattern 2: Design to Implementation
Generate code from the design:
async function generateFromDesign(design, language) {
const prompt = `
Generate ${language} code based on this technical design.
DESIGN:
${JSON.stringify(design, null, 2)}
REQUIREMENTS:
1. Follow ${language} best practices
2. Include type annotations
3. Handle all error cases from the design
4. Add inline comments for complex logic
5. Use meaningful variable names
Generate the implementation:
`;
return await llm.chat({ content: prompt });
}
Pattern 3: Generate with Context
Include relevant existing code:
Loading Prompt Playground...
Multi-Step Code Generation
Step 1: Interface/Contract Definition
async function generateInterface(requirements) {
const prompt = `
Based on these requirements, define the TypeScript interfaces and function signatures.
Do NOT implement - only define the contracts.
Requirements: ${requirements}
Output format:
- Interface definitions
- Function signatures with JSDoc
- Type definitions
- Error types
`;
return await llm.chat({ content: prompt });
}
Step 2: Implementation
async function generateImplementation(interfaces) {
const prompt = `
Implement the following interfaces and function signatures.
INTERFACES AND SIGNATURES:
${interfaces}
IMPLEMENTATION RULES:
1. Implement all functions to match their signatures exactly
2. Throw appropriate errors for invalid inputs
3. Handle edge cases
4. Do NOT modify the interfaces
Generate the implementation:
`;
return await llm.chat({ content: prompt });
}
Step 3: Validation
async function validateGeneration(interfaces, implementation) {
const prompt = `
Validate that this implementation correctly implements the interfaces.
INTERFACES:
${interfaces}
IMPLEMENTATION:
${implementation}
Check for:
1. All functions implemented
2. Return types match
3. Parameter types match
4. Error types used correctly
5. No missing functionality
Report any issues found:
`;
return await llm.chat({ content: prompt });
}
Component Generation Chain
For larger code generation tasks:
Loading Prompt Playground...
Error Handling in Code Generation
Syntax Validation
async function validateSyntax(code, language) {
// Use language-specific parsers
try {
if (language === 'javascript' || language === 'typescript') {
const ast = parse(code);
return { valid: true, ast };
}
// Add other language parsers
} catch (error) {
return {
valid: false,
error: error.message,
line: error.line
};
}
}
Logic Validation
async function validateLogic(code, requirements) {
const prompt = `
Check if this code correctly implements the requirements.
REQUIREMENTS:
${requirements}
CODE:
${code}
Check for:
1. All requirements addressed
2. Edge cases handled
3. No obvious bugs
4. No security vulnerabilities
Report issues as:
{ "issues": [{ "severity": "high|medium|low", "description": "", "line": number }] }
`;
return await llm.chat({ content: prompt });
}
Exercise: Build a Code Generation Chain
Loading Prompt Playground...
Key Takeaways
- Convert requirements to design before generating code
- Generate interfaces/contracts first, then implementations
- Include existing code context for consistency
- Validate at multiple stages (syntax, logic, requirements)
- Break large generation tasks into components
- Use multi-step chains for complex code
Next, we'll explore test generation chains.

